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 By concentrating sensitive information in one location, traditional 

centralized data processing increases the vulnerabilities of Wireless Sensor 

Networks (WSNs) to data interception, tampering, unauthorized access, 

and privacy issues when transmitting sensitive data. Implementing a 

decentralized machine learning approach would benefit efforts at mitigating 

these vulnerabilities. In this study, the federated learning approach—a 

decentralized machine learning approach—was used to address security 

and privacy challenges in WSNs. The method adopted involved the 

initialization of sensor data and model parameters, letting the system enter 

a federated learning loop for each device to update its model using its data, 

aggregating the local updates into the global model, and using the model 

for prediction. The algorithm was implemented using MATLAB. Results 

showed that federated learning improved the resilience of WSNs, 

achieving 60% reliability and a mean square error of 1.46. This indicates 

that federated learning can handle the security and privacy concerns in 

WSNs effectively by decentralizing data processing and preserving privacy. 

Its ability to protect sensitive information while ensuring the accuracy of 

data analysis makes it a valuable approach for advancing sensor network 

technologies across various fields. 
© 2024 Authors. All rights reserved. 
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1. Introduction 

Internet of Things (IoT) is increasingly becoming 

a very promising paradigm with the extensive 

market adoption of the development of 

associated technologies including (among others) 

cloud computing, near-field communications, and 

wireless mobile networks (Burhanuddin et al., 
2018). However, security issues in IoT routed 

over wireless communication remain a huge 

challenge. This is because the use of internet 

devices in different communications through 

embedded technologies and the adaptive and 

interactive nature of each communication affects 

future development tools and applications 

(Saibabu et al., 2020).  

For instance, the increasing prevalence of IoT 

devices has brought about numerous security 

challenges due to their relatively simple internal 

architecture and low-powered hardware 

warranted by their small footprint requirement 
(Hu et al., 2022b; Mohammed et al., 2023). The 

sheer number of IoT devices in use today poses 

a great security challenge because the devices are 

often constrained by some hardware and 

software limitations in addition to being designed 

with a focus on convenience, ease of use, mass 
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production, and low cost, rather than security. 

To enhance the security architecture of IoT 

devices in use currently, emphasis is gradually 

shifting to the use of Wireless Sensor Networks 

(WSNs).  

WSNs are described as self-configuring, 

infrastructureless wireless networks designed to 

monitor environmental and physical conditions 

such as temperature, sound, vibration, pressure, 

motion, or pollutants (Huang et al., 2021). These 

networks transmit collected data co-operatively 

through the network to a centralized location, or 

"sink", where the information is processed and 

analyzed (Yawar et al., 2017). WSNs typically 

involve smart devices and sensors that gather 

real-world data, process them, and communicate 

same to information processing centers, which in 

turn generate information-based services for 

pre-programmed or user-defined actions. WSNs 

consist of numerous low-cost, low-power, 

multifunctional sensor nodes that communicate 

wirelessly over short distances (Sehajpreet & 

Baby, 2023). These sensor nodes form the basic 

building blocks of WSNs, with a sink or base 

station acting as the interface between users and 

the network, allowing queries to be injected and 

results to be retrieved (Yawar et al., 2017). The 

hardware of a sensor node generally comprises 

four key components including a power 

management module, sensor, microcontroller, 

and wireless transceiver. The power module 

provides the necessary energy for operation, 

while the sensor detects environmental 

conditions, converting physical signals into 

electrical ones. The microcontroller processes 
the data, and the transceiver handles data 

transmission and reception (Yawar et al., 2017). 

Transceivers in sensor nodes consume more 

power than other components due to the 

amplification required for packet transmission. 

WSNs typically use communication standards 

like IEEE 802.15.4, ZigBee, and Bluetooth, which 

fall under Wireless Personal Area Network 

(WPAN) or Low Power Wide Area Network 

(LPWAN) protocols (Yawar et al., 2017). 

However, each sensor node is resource-

constrained, with limited processing speed, 

storage, and communication bandwidth. 

Despite WSN protocols and security challenges 

for environmental monitoring applications, in 

recent years, communication technology has 
improved exponentially, partly owing to the 

locations and nature of the deployment of sensor 

nodes. WSNs contain these sensor nodes and 

can provide real-time environmental, home, 

commercial, military, and health system 

measurements (Italo et al., 2022). WSNs are 

used in numerous applications that involve 

sensitive information that needs to be secure and 

confidential, especially in applications that deal 

with top-secret information such as military 

applications (Jin et al., 2021). Since WSNs have 

revolutionized data collection and real-time 

monitoring, recent studies have underscored the 

critical significance of securing WSNs due to 

their essential role in a broad spectrum of 

applications (Muawia et al., 2019; Sehajpreet and 

Baby, 2023).  

Even then, the susceptibility of WSNs to security 

threats remains a significant concern (Hu et al., 

2022a). Specifically, WSNs face risks of data 

interception, tampering, and unauthorized 

access, as well as privacy issues when 

transmitting sensitive data. It is widely known 

that traditional centralized data processing 

increases these vulnerabilities by concentrating 

sensitive information in one location, making it 

more prone to attacks. To mitigate this challenge, 

federated learning—a decentralized machine 

learning approach—was adopted in this study. 

Federated learning enables sensor nodes to 
collaborate on model training without sharing 

raw data, thereby protecting data privacy while 

allowing for effective analysis and prediction. This 

decentralized approach enhances the security 

and privacy of WSNs by minimizing the risk of 

data breaches that are common in centralized 

systems. The aim of this study was to mitigate the 

security and privacy challenges in WSNs, which 

was achieved by addressing the following 

objectives. 
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i. Evaluate the responsiveness of the WSN 

nodes. 

ii. Evaluate the integrity of WSN using a 

federated learning algorithm approach. 

iii. Evaluate and encrypt temperature and 
humidity data using a federated learning 

algorithm. 

iv. Investigate the performance of the federated 

learning algorithm and the reliability of 

the federated learning algorithm on WSN 

nodes. 

2. Materials and Methods 

2.1 Materials 

WSN temperature and humidity sensors, Dell 

latitude E5500 personal computer and router. 

2.2 Methods 

The method adopted in this work was the 

application of a federated learning algorithm. Figure 

1 represents a federated learning method, designed 

for a temperature and humidity sensor network. 

The process begins with the initialization of sensor 

data and model parameters. Then the system 

enters a federated learning loop where each device 

updates its model using its data. These local 

updates are aggregated into the global model, 

which gets updated iteratively. After several 

training epochs, the model was used for prediction. 

The system also includes a step for securing data 

before the final phase, where the actual, predicted, 

and secured data are plotted. The process 

concludes once all predictions are visualized. The 

algorithm was implemented using MATLAB.

 
Figure 1: Secured Data Flowchart using Federated Learning Algorithm 
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2.2.1 WSN Sensor Evaluation 

To evaluate the WSN, each client node updates 

its local model by minimizing its loss function 

using its local data. Equation (1) expresses the 

dynamic behaviour of the sensor nodes (Jia et al., 

2019). 

𝜃𝑡+1
𝑖 = 𝜃𝑡 − 𝜂∇ℒ(𝜔𝑡

𝑖 , 𝐷𝑖)                       (1) 

The server aggregates the updated models from 

the client nodes to form equation 2. 

𝜃𝑡+1
𝑖 =

1

𝑁
∑ 𝜃𝑡+1

𝑖𝑁
𝑖=1                                 (2) 

The loss function was used by each client to 

update its local model to give equation 3.  

ℒ(𝜔, 𝐷𝑖) =
1

|𝐷𝑖|
∑(𝑥, 𝑦)𝜖𝐷𝑖   ℒ(𝑓(𝑤, 𝑥), 𝑦)       (3) 

2.3  Data Security Evaluation Using Federated 

Learning Algorithm 

Constraint ensuring that raw data never leaves 

the client devices is presented in equation 4. 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦(𝐷𝑖) = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛        (4) 

How data are aggregated across nodes while 

preserving privacy is shown in equation 5. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐷1, 𝐷2 … 𝐷𝑁) =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝐷1) ⊕ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝐷2) ⊕ … ⊕
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝐷𝑁                                                  (5) 

Table 1 shows the data of the temperature and 

humidity from the WSN.  

Table 1: WSN Data for Temperature and 

Humidity. 

Node ID Temperature 

(°C) a 

Humidity  

(%) a 

Node 1 25.3 60 

Node 2 24.8 58 

Node 3 25.5 62 

Node 4 24.9 59 

Node 5 26.1 61 

Node 6 24.7 57 

Node 7 25.9 63 

Node 8 26.3 64 

Node 9 25.2 58 

Node 10 24.5 60 
a Data from Sani & Itse (2018). 

2.4 Temperature and Humidity Data Evaluation 

Using the temperature and humidity data from 

multiple sources for more accurate models, we 

have equation 6. 

𝐹𝑢𝑠𝑠𝑖𝑜𝑛 (𝑇1, 𝑇2, … 𝑇𝑁 , 𝐻1,𝐻2, … , 𝐻𝑁) −
1

2𝑁
∑ (𝑇𝑖 + 𝐻𝑖)

𝑁
𝐼=1                                                 (6)  

Adding noise to the local updates to preserve 

privacy, we have equation 7. 

𝜃𝑡+1
𝑖 = 𝜃𝑡 − 𝜂∇𝐿(𝜔𝑡

𝑖 , 𝐷𝑖) + 𝑁𝑜𝑖𝑠𝑒                   (7) 

3 Results and Discussion 

3.1 Received Sensed Data 

The sensed data in a WSN represents raw 

environmental measurements collected by 

distributed sensor nodes. Figure 2 shows the 

humidity data within 0 to 4 g/m³ and temperature 

between -4 to 4°C. 

 
Figure 2: Sensor Data and Labels 

Figure 3 shows predictions of temperature rising 

to 50°C and humidity to 40 g/m³. These values 

reflect real-time conditions such as temperature, 

humidity, pressure, or motion, depending on 

sensor configurations. In federated learning, these 

sensed data serve as input for training machine 

learning models across nodes. Federated learning 

processes data locally on each node while sharing 

model updates with a central server, enabling 

collaborative prediction without transmitting raw 

data. The predicted data, shown in Figure 3, 

demonstrate the model’s ability to forecast 

environmental changes beyond the sensed data, 

allowing for accurate predictions of trends or 

anomalies. Federated learning enhances WSN 

capabilities, turning sensed data into actionable 
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insights for improved environmental monitoring 

and management. 

 
Figure 3: Received Sensed Temperature and 

Humidity Data 

3.2 Encrypted WSN Data 

Figures 4 and 5 show the graphs of temperature 

and humidity secured and predicted data of a 

WSN serving as visual representations of 

environmental conditions, providing valuable 

insights into temperature and humidity dynamics 

over time without the need for itemized points. 

These graphs offer a comprehensive view of 

environmental parameters, allowing users to 

observe trends, anomalies, and forecasted 

patterns. In the secured data graph, temperature 

and humidity readings collected from sensors 

within the network are plotted against time. The 

graph depicts data chronologically, with time 

progressing along the horizontal axis and 

temperature/humidity values represented on the 

vertical axis. 

As the secured data graph is examined, patterns 

and fluctuations in temperature and humidity 

become apparent. Peaks and troughs in the graph 

denote periods of high and low readings, 

respectively. These fluctuations may occur 

cyclically, such as daily temperature variations, or 

in response to external factors like weather 

conditions or human activities. By analyzing the 

graph's trajectory, users can discern long-term 
trends and seasonal patterns in environmental 

conditions. 

Anomalies or outliers in the secured data graph 

may indicate sensor malfunctions, environmental 

disturbances, or localized events. Sudden spikes 

or dips in temperature/humidity readings warrant 

further investigation to ensure data integrity and 

reliability. Addressing anomalies promptly is 

crucial for maintaining the accuracy of WSN-

based monitoring systems. In contrast, the 

predicted data graph utilizes forecasting models 

to estimate future temperature and humidity 

trends based on historical data and predictive 

algorithms. This graph extends beyond displaying 

past observations, offering projections of 

environmental conditions over upcoming time 

intervals. Predicted data graphs provide valuable 

insights for planning and decision making, allowing 

users to anticipate changes in temperature and 

humidity and take proactive measures 

accordingly. 

The predicted data graph often overlays 

forecasted trends onto existing secured data, 

enabling users to compare actual observations 

with projected outcomes. Discrepancies between 

predicted and observed values can highlight 

deviations from expected patterns, prompting 

adjustments to monitoring strategies or resource 

management practices. Both the secured data 

graph and predicted data graph serve as 

communication tools, conveying environmental 

insights to stakeholders effectively. Whether 

presenting historical trends or future projections, 

these graphical representations facilitate data 

comprehension and decision making across 

various domains, including environmental 

monitoring, agriculture, infrastructure 

management, and industrial operations. 

 
Figure 4: Secured Data and Labels 
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Figure 5: Secured Sensor Data 

Figure 6 shows the sensor nodes' capacity of the 

temperature and humidity data of a WSN, which 

provides a visual representation of environmental 

conditions over a specified period. This graph 

serves as a crucial tool for monitoring and 

analyzing temperature and humidity variations in 

each location or area of interest. At first glance, 

the graph presents a series of data points plotted 

on a Cartesian coordinate system. Typically, time 

is represented on the horizontal axis, while 

temperature and humidity values are displayed on 

the vertical axis. Each data point corresponds to 

a specific time interval, indicating the concurrent 

temperature and humidity readings recorded by 

sensors within the WSN. The patterns and trends 

in temperature and humidity are easily 

discernible. Fluctuations in the graph's trajectory 

reflect changes in environmental conditions over 

time. For instance, daily temperature variations 

may manifest as regular oscillations, with peaks 

and troughs corresponding to daytime warmth 

and nighttime cooling. Similarly, humidity levels 

may exhibit fluctuations in response to weather 

patterns, such as increased humidity during rainy 

periods. 

The graph's shape and slope offer insights into the 

overall trend of temperature and humidity 

conditions. A steep incline or decline in the graph 

suggests rapid changes in environmental 

parameters, indicating sudden shifts in weather or 

other factors influencing temperature and 

humidity. In contrast, a gradual slope signifies 

more stable conditions, with minor fluctuations 

occurring over time. 

Anomalies or outliers in the data may appear as 

isolated data points deviating significantly from 

the overall trend. These anomalies could result 

from sensor malfunctions, environmental 

disturbances, or localized events impacting 

temperature and humidity readings. Identifying 

and addressing such anomalies is essential for 

ensuring the accuracy and reliability of the data 

collected by the WSN. 

Overlaying multiple datasets on the same graph 

allows for comparative analysis of temperature 

and humidity trends. By plotting data from 

different sensor nodes within the network or 

comparing data from different periods, users can 

discern spatial and temporal variations in 

environmental conditions. Such comparisons 

reveal spatial gradients in temperature and 

humidity or highlight temporal synchronicities 

across different locations. 

Moreover, the temperature and humidity data 

graph can incorporate additional features to 

enhance data interpretation. Colour-coded 

markers or lines may differentiate between 

temperature and humidity readings, making it 

easier to distinguish between the two 
parameters. Annotations or labels on the graph 

provide context for significant events or trends, 

aiding users in understanding the data more 

comprehensively. 

 
Figure 6:  WSN Nodes Sensor 
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Beyond mere visualization, the graph facilitates 

data-driven decision-making and planning. 

Stakeholders can use the insights gleaned from 

the graph to optimize resource management, 

mitigate environmental risks, or plan for future 

scenarios. For example, agricultural practitioners 

may use temperature and humidity data to 

schedule irrigation or monitor crop health, while 

urban planners may utilize the data to design 

climate-resilient infrastructure. 

3.3  Tampered Sensor Data 

Figure 7 shows the WSN and how it operates as 

a complex system of interconnected nodes, each 

tasked with collecting and transmitting data from 

their respective environments. The integrity of 

this data is paramount for the network to 

function effectively. However, when a sensor 

within the network is tampered with, it disrupts 

the flow of accurate information, leading to 

potential complications and security breaches. 

In a hypothetical graph of interconnections of 

sensors within a WSN, each node in this graph 

symbolizes a sensor, and the edges between 

them depict communication channels through 

which data flow. This graph serves as a visual 
representation of the network's structure and 

the relationships between its components. In a 

tampered sensor scenario, one or more nodes in 

this graph are compromised, either physically or 

electronically. This compromise could range 

from subtle alterations to outright manipulation 

of sensor readings. As a result, the graph's 

integrity is compromised, leading to distortions 

in the data being transmitted across the network. 

Consider a WSN deployed for environmental 

monitoring in a forest. Each sensor node in the 

network is responsible for measuring parameters 

such as temperature, humidity, and air quality. 

These nodes communicate with each other to 

relay this data to a central control unit for 

analysis and decision-making. Now, suppose an 

adversary gains unauthorized access to one of 

the sensor nodes and modifies its temperature 

readings to falsely indicate a fire outbreak. This 

tampered sensor continues to communicate 

these falsified readings to neighboring nodes, 

propagating misinformation throughout the 

network. As the tampered data spreads through 

the network, it influences the decisions and 

actions taken based on this information. In the 

case of our forest monitoring example, 

authorities might dispatch firefighting teams to a 

location based on the false alarm triggered by the 

tampered sensor data. This not only wastes 

resources but also diverts attention away from 

genuine emergencies elsewhere. 

Moreover, the presence of a tampered sensor 

undermines trust in the entire network. Users 

relying on WSN data for critical tasks may begin 

to question the reliability of the information 

being provided. This loss of trust can have far-

reaching consequences, affecting the adoption 

and utilization of WSN technology across various 

domains. Addressing the challenge of tampered 

sensors in WSNs requires a concerted effort to 

enhance security measures and develop robust 

defence mechanisms. Physical security measures, 

such as tamper-evident enclosures and secure 

mounting techniques, can help prevent 

unauthorized access to sensor nodes. 

Additionally, implementing cryptographic 

protocols and authentication mechanisms can 

safeguard data transmission within the network, 

ensuring the integrity and confidentiality of 

information exchanged between nodes. 

Continuous monitoring and anomaly detection 

algorithms further aid in identifying and mitigating 

instances of sensor tampering, enabling timely 

response to potential security breaches. 

 

Figure 7: Tampered Sensor Data and Labels 
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3.4  WSN Performance Using Federated Learning 

Figure 8 shows the behaviour of federated 

learning that offers promising avenues for training 

models within WSNs while mitigating concerns 

regarding data privacy and communication 

overhead. When evaluating the performance of 

federated learning on WSNs, metrics such as 

mean squared error (MSE) and training epochs 

provide insights into the effectiveness and 

efficiency of the learning process. In a scenario 

where the MSE is measured at 1.46 and the 

training is conducted over a single epoch, several 

key observations can be made regarding the 

performance of federated learning within the 

WSN context. 

First, the MSE value of 1.46 indicates the average 

squared difference between predicted and actual 

values across the dataset. In the context of 

federated learning on WSNs, this MSE value 

reflects the model's prediction accuracy in 

capturing the underlying patterns within the 

sensor data. A lower MSE suggests that the 

model's predictions closely align with ground 

truth observations, indicating superior 

performance in learning from the distributed 

sensor data. 

Moreover, achieving an MSE of 1.46 within a 

single epoch demonstrates the efficiency of 

federated learning in leveraging the collective 

intelligence of sensor nodes for model training. 

By aggregating local updates from individual 

nodes and incorporating them into the model, 

federated learning minimizes the need for 

extensive communication and centralized 

processing thus, reducing the computational 

burden on resource-constrained WSNs. 

Furthermore, the choice of a single epoch for 

training underscores the iterative nature of 

federated learning, where model updates are 

incrementally refined over multiple rounds of 

communication and collaboration. While a single 

epoch may provide a preliminary snapshot of 

model performance, it may not fully capture the 

potential improvements that could be achieved 

through additional training iterations. Therefore, 

future evaluations may involve extending the 

training process over multiple epochs to assess 

the convergence and stability of the learned 

model. 

Additionally, the performance of federated 

learning on WSNs is influenced by various 

factors, including network topology, 

communication latency, and data heterogeneity. 

The decentralized nature of WSNs introduces 

challenges such as node mobility, unreliable 

communication links, and energy constraints, 

which can impact the effectiveness of federated 

learning algorithms. Addressing these challenges 

requires tailored optimization techniques and 

adaptive learning strategies to enhance the 

robustness and scalability of federated learning in 

WSN environments.  

 
Figure 8: Performance of Federated Learning 

3.5 Sensor Data with Detected Anomalies 

Figure 9 is a visual representation used to analyze 

anomalies or irregularities within data collected 

by sensors in a system or environment. This graph 

provides a comprehensive view of sensor data 

over time, allowing analysts to identify deviations 

from expected patterns or behaviour. The graph 

shows that the sensor data detected anomalies. 

At its core, the graph displays a time-series 

representation of sensor measurements, with 

time intervals plotted along the x-axis and 

corresponding sensor observations plotted along 

the y-axis. Each data point on the graph 

represents a specific measurement recorded by 
the sensors at a particular time, providing insights 

into the dynamics and trends within the 

monitored system. 
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Anomalies detected within the sensor data are 

visually highlighted on the graph, often using 

distinct markers, colors, or annotations to 

differentiate them from normal data points. These 

anomalies can manifest in various forms, including 

sudden spikes or drops in sensor readings, 

unexpected fluctuations, or patterns deviating 

significantly from historical norms. 

The graph serves multiple purposes in analyzing 

sensor data anomalies. Firstly, it facilitates the 

detection of anomalies by allowing analysts to 

visually identify irregularities within the data. By 

observing deviations from expected patterns, 

analysts can pinpoint potential issues or abnormal 

events that require further investigation. 

Moreover, the graph enables analysts to analyze 

the characteristics of detected anomalies, such as 

their magnitude, duration, frequency, and 

contextual information. This analysis aids in 

understanding the nature and severity of 

anomalies and formulating appropriate response 

strategies. 

The graph also supports the identification of 

long-term trends and patterns within the sensor 

data. By visualizing data over time, analysts can 
distinguish between transient anomalies and 

sustained deviations, providing insights into 

systemic issues or emerging trends. 

Real-time monitoring of the graph allows for 

timely detection and notification of anomalous 

events, enabling operators to respond promptly 

and mitigate potential impacts. Automated 

alerting mechanisms can be integrated to notify 

stakeholders when anomalies surpass predefined 

thresholds or violate established norms. 

Furthermore, analysts can correlate anomalies 

detected in sensor data with other relevant 

datasets to uncover causal relationships and 

contextualize abnormal observations. This 

holistic approach enhances understanding and 

decision-making regarding anomaly mitigation 

and response. 

Additionally, historical anomaly data depicted on 

the graph can inform predictive modeling and 

machine learning algorithms, enabling the 

anticipation and prevention of future anomalies 

through early warning systems and proactive 

maintenance strategies. 

Overall, the sensor data detected anomalies 

graph serves as a powerful tool for monitoring, 

analyzing, and responding to anomalies within 

sensor data. By providing a visual representation 

of anomalies, the graph empowers stakeholders 

to make informed decisions, optimize resource 

allocation, enhance system reliability, and mitigate 

risks associated with abnormal events.  

 
Figure 9: Detected Anomalies 

3.6 Data Integrity 

Ensuring data integrity during the transmission 

and reception of temperature readings, such as 

25.5°C and 27.5°C, is crucial for maintaining 

accurate and reliable information flow. Data 

integrity refers to the process of ensuring that 

data remains accurate, consistent, and reliable 

from its creation to reception. For temperature 

data transmission, integrity is preserved through 

encoding, modulating, and converting the data 

into a format suitable for communication. Proper 

encoding techniques help minimize distortion or 

alteration during transmission as shown in Figure 

10. 

Transmission channels often introduce noise and 

interference, but error detection and correction 

methods, like checksums, help detect and rectify 

discrepancies. Reliable transmission protocols, 

such as TCP/IP, enhance data integrity by 
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incorporating acknowledgments and re-

transmission mechanisms. Additionally, 

encryption safeguards the data from tampering, 

while authentication confirms the identities of 

the sender and receiver. Upon reception, the data 

is verified for consistency through error 

detection, validation, decryption, and 

authentication processes to ensure it matches 

the original values sent. 

   

Figure 10: Data Integrity 

4.0    Conclusions 

This study thoroughly examined several critical 

aspects of WSNs using federated learning 

algorithm. The work provided a focused analysis 

that contributes to the overall understanding of 

how federated learning can enhance the 

functionality, security, and performance of 

WSNs.  

In the first instance, the responsiveness of WSN 

nodes was evaluated. The findings indicated that 

the nodes could efficiently respond to data 

collection and processing tasks, maintaining 

optimal performance under various conditions. 

This responsiveness is crucial for real-time 

applications where timely data acquisition and 

transmission are essential. 

Furthermore, the integrity of the WSN was 

assessed using a federated learning algorithm 

approach implemented with MATLAB. The 

results demonstrated that federated learning 

significantly enhanced data integrity by minimizing 

the risks associated with centralized data storage 

and processing. By distributing the learning 

process, the system showed improved resilience 

against data corruption and attacks. 

Also, temperature and humidity data were 

encrypted and evaluated using a federated 

learning algorithm. The encryption process 

ensured that sensitive data remained secure 

throughout its lifecycle. In addition, the federated 

learning algorithm facilitated effective data 

processing without compromising the 

encryption, thereby maintaining both data 

security and analytical accuracy. 

Besides, the performance and reliability of the 

federated learning algorithm on WSN nodes 

were investigated. The federated approach 

proved to be robust and reliable, showing 

consistent performance across various scenarios. 

This reliability is crucial for applications that 

depend on the continuous and accurate 

functioning of WSNs, such as environmental 

monitoring and smart agriculture. 

Additionally, the performance of federated 

learning algorithms was evaluated, highlighting 

key advantages such as enhanced data privacy, 

scalability, and resilience. Federated learning 

proved to be a more secure and efficient 

solution, addressing concerns like data breaches 

and system vulnerabilities by avoiding a single 

point of failure. This decentralized approach 

allowed for improved security and scalability 

without compromising on performance. 

From the foregoing, federated learning 

algorithms offer substantial advantages for WSNs 

in terms of responsiveness, data integrity, 

security, performance, and reliability. These 

benefits position federated learning as a superior 

approach to centralized learning, making it a 

viable and preferable option for future WSN 

applications. 
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