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The fundamental step needed for planning and optimizing any wireless 

network during its early phase of deployment involves the estimation of 

radio coverage. Fifth generation (5G) telecommunication systems in Nigeria 

are in their early stages; hence, there is a need to develop effective mobile 

coverage prediction models with high accuracy and minimal complexity. In 

this study, measurements of 5G signal strength on 3.5GHz frequency 

operation were carried out at three different locations in Rivers State, Niger 

Delta region of Nigeria. Atmospheric variables at the study locations were 

collected with a Power Data Access Viewer (DAV) Web Mapping 

Application. The path loss prediction model developed in this study is a 

function of technical variables (distance between transmitter and receiver as 

well as antenna heights of the transmitter and receiver) and atmospheric 

variables (air temperature, wind speed, wind direction, and precipitation). A 

multilayer perceptron (MLP) neural network was employed to develop the 

proposed model. The MLP neural network model prediction performance 

was based on the mean absolute error (MAE), root mean square error 

(RMSE), and coefficient of determination (r2). The model's validity was 

assessed by comparing its results with those of empirical path loss models. 

The MLP neural network achieved an R-square score of 0.88, indicating that 

it explained 88% of the variability in the dataset. The MLP model 

demonstrated a substantial improvement in accuracy, reducing the RMSE to 

3.80 dB compared with the standard 8 dB benchmark for tuned models. The 

results obtained by the MLP neural network model suggest that atmospheric 

conditions play a significant role in the evaluation of 5G mobile signal 

analysis. 
© 2024 Authors. All rights reserved.
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1. Introduction

The role of telecommunication in building a 

nation’s economy, especially the underdeveloped 

economies in sub-Sahara Africa cannot be 

quantified (Maneejuk & Yamaka, 2020). Osuagwu 

(2017) provided findings that support a strong 

correlation between a country’s 

telecommunication capacity and its gross 

domestic product (GDP). The right application of 

telecommunication systems in underdeveloped 

nations like Nigeria will close the digital gap 

between the rural and urban areas; thereby 

Journal of Newviews in Engineering and Technology, Vol. 6(3), (2024) 81–91. 

   ISSN: 2795-2215 

Journal  of  Newviews in 

Eng ineer ing  & Technology
Faculty of Engineering 

Rivers State University, Port Harcourt, Nigeria. 

Emai l :  r su jnet@gmai l . com │Homepage :  www.r su jne t .org  

Predicting Fifth Generation (5G) Network Coverage Using Multilayer 

Perceptron Neural Network 

A.A. Enughwure 1,, P. Elechi 2,*, I.B. Asianuba 3

http://www.rsujnet.org/index.php/publications/2024-edition
mailto:elechi.promise@ust.edu.ng
mailto:rsujnet@gmail.com
http://www.rsujnet.org/


Enughwure et al. (2024) 

 

Available online at: http://www.rsujnet.org/index.php/publications/2024-edition               82 

providing the infrastructure and technology for 

ICT-driven applications and services (Matthews 

et al., 2017, Akpobasa & Ishioro, 2022).  Nigeria 

is the most vibrant telecommunication consumer 

in sub-Saharan Africa since there is a clear need 
for its citizens to establish communications in a 

consistent manner (Abubakar, 2020). This 

demand led to the adoption of the fifth 

generation (5G) telecommunication services in 

the country (Enughwure et al., 2023). 

The deployment of 5G cellular systems calls for 

a knowledge of the design and implementation of 

5G mobile communication networks in the 

coverage area (Popoola et al., 2018). These 

factors are the determinants of transmission rate 

and the quality of signal propagation. It is 

important to note that 5G introduces higher 

frequencies compared to previous generations, 

which results in shorter wavelengths and 

increased susceptibility to attenuation (Xing & 

Rappaport, 2021). As a result, 5G signals are 

more affected by obstacles such as buildings, 

vegetation, human presence, vehicles, and other 

physical structures, leading to increased path loss 

compared to lower frequency signals (Qamar et 

al., 2019; Okaf, 2021). Environmental factors 

including air temperature, surface pressure, wind 

speed, wind direction, and precipitation also 

impact the performance of 5G signal propagation 

as shown in recent studies. Furthermore, 5G 

signals are easily scattered and absorbed by 

weather conditions including rain, fog, and snow 

(Qamar et al., 2019).  

When radio waves encounter reflection, 

scattering, and diffraction between the 
transmitter and mobile devices, signal fading 

occurs. When signal fading takes place over a 

large distance on the propagation medium, this 

leads to path loss. Path loss is a phenomenon that 

occurs in wireless communication systems, 

including 5G, where the signal strength decreases 

as it propagates through the medium (Shavea et 

al., 2020). Path loss depends on various factors 

including the distance between the transmitter 

and receiver, frequency of the signal, and 

characteristics of the surrounding environment 

(Sambo et al., 2020). In 5G communication 

systems, path loss can be estimated using 

different empirical models, including the 

Okumura-Hata model, the COST-231 Hata 

model, and the Extended Hata model (Oladimeji 
et al., 2022). These models consider factors 

including frequency, distance, and environment 

type (urban, suburban, or rural) to estimate the 

path loss (Nguyen et al., 2023).  

Meanwhile, previous researchers have addressed 

propagation losses on 5G mobile technology, 

evaluating different scenarios and at different 

frequencies within 0.5–100 GHz.  For instance, 

Schumacher (2019) presented the path loss 

assessment obtained from a pre-standard 5G 

prototype testbed operating at 3.5 GHz in rural, 

suburban, and urban environments. The study 

considered different scenarios including outdoor 

signal coverage. The 3GPP group of models 

ranked the best in this study with RMSE of 2.1, 

3.8, and 14.9 dB for the urban, suburban, and 

rural scenarios, respectively. Juang (2021) 

proposed a hybrid model that employed log-

distance path loss model and a machine-learning-

based model for line-of-sight and non-line-of-

sight (NLOS) communication, respectively. 

Results showed a reduction in the prediction 

error in the range of 22.2–37.2% when compared 

with the conventional models. Hervis et al. (2022) 

investigated the use of machine learning to 

approximate a complex 5G path loss model. 

Algorithms employed in the study were based on 

Genetic Algorithms in an indoor facility. Hervis 

et al. (2022) considered several walls between 

the transmitter and receiver and observed that 
total wall loss along the direct ray yielded a mean 

arithmetic error (MAE) of less than 3 dB. Juang 

(2021) performed a study on 5G 3.5 GHz path 

loss modelling based on path profiles in urban 

environments. Basyigit (2022) carried out 

empirical path loss models for 5G wireless 

sensor networks in coastal pebble/sand 

environments at different frequencies (3.5 and 

4.2 GHz). The empirical path loss models 

considered were free space path loss, two-ray 

model, and log-normal model. The log-normal 

model obtained the best result when RMSE was 
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measured at both frequencies. The findings show 

that environmental factors affect the 

performance of the 5G signal. The performance 

of the log-normal model within the small pebble 

environment has the lowest RMSE of 3.8 dB 
compared with the two-ray model within the 

wet-sand environment, with the highest RMSE of 

15.68 dB. Alnatoor et al. (2022) examined neural 

network techniques for efficient path loss 

prediction in a bid to address the shortcomings 

associated with empirical and deterministic path 

loss prediction models. Alnatoor et al. (2022) 

reported that the MLP-based path loss model 

outperformed the empirical path loss models. 

In Nigeria, 5G telecommunication systems are in 

their early stages. Consequently, there is paucity 

of literature on the impact of technical and 

environmental parameters on 5G path loss 

prediction using stochastic approach. Hence, 

there is a need to develop effective mobile 

coverage prediction models with high accuracy 

and minimal complexity in Nigeria. The objective 

of this study was to develop a path loss 

prediction model for 5G network coverage at 

selected locations in Rivers State, Niger Delta 

region of Nigeria using stochastic approach.  
 

2. Materials and Methods 

2.1 Model Selection 

There are several empirical path loss models 

available in the literature, which include free 

space, plan earth, lognormal shadowing, Ericsson, 

Okumura, Hata-Okumura, Egli, Stanford 

University Interim, International 

Telecommunication Union (ITU-R) models 

(among others).  However, to select the most 

suitable empirical model(s) for this study, 

considerations were given to the operating 

frequency and technical parameters (i.e., distance 

between the transmitter and the receiver). The 

following empirical models were selected. 

 

2.1.1 Free Space Path Loss Model 

The model measures the signal strength loss 

between the transmitter and the receiver in an 
ideal environment (Imoize & Ogunfuwa, 2018). 

The free space model is a function of operating 

frequency (MHz) and distance (Km). This is 

expressed as shown in Equation 1. 

𝑃𝐿 (𝑑𝐵)   = 32.5 +  20𝑙𝑜𝑔10 (𝑓) +  20𝑙𝑜𝑔10 (𝑑) (1)   

Where f is the operating frequency and d is the 

propagation distance. 

2.1.2 International Telecommunication Union (ITU-

R) Model 

The ITU-R model is suitable for the signal loss 

propagation exercises when the transmitter and 

receiver units are located below the rooftop, 

without consideration of their antenna heights 
(Elechi and Otasowie, 2015; Zakaria et al., 2015). 

The ITU-R model is presented in Equation 2.   

𝑃𝐿 (𝑑, 𝑓) = 10𝛼𝑙𝑜𝑔10 (𝑑) +  𝛽 +  10𝛾𝑙𝑜𝑔10 (𝑓) +
𝑁(0, 𝜎)  𝑑𝐵     (2) 

Where d is the 3-D direct distance between the 

transmitter and receiver in metres, f is the 

operating frequency (GHz), α is the coefficient 

associated with the increase of the path loss with 

distance, β is the coefficient associated with the 

offset value of the path loss, γ is the coefficient 

associated with the increase of the path loss with 

frequency, N(0,σ) is a zero mean Gaussian 

random variable with a standard deviation σ (dB).  

 

2.1.3 Stanford University Interim (SUI) Model 

Stanford University developed the SUI model to 

improve the Hata Pathloss model (Khaled et al., 

2020). The SUI model can optimally operate at 

300 MHz – 3.5GHz. This is worth noting that the 

SUI PLM can perform the path loss prediction 

within the following parameters provided below: 

Cell radius: (100 -8000) m, Receiver antenna 

height: (2-10) m and Base station antenna height: 

(10-80) m (Yusof et al., 2022). The SUI model can 

carry out signal strength loss measurements at 

different terrains (mountains or planes) and 

vegetation levels (heavy or small). The basic path 

loss equation of the SUI PLM with correction 

factors is expressed in Equations 3 through 8. 

𝑃𝐿 = 𝐴 + 10𝑛𝑙𝑜𝑔10 (
𝑑

𝑑0
) +  𝑋𝑓 +  𝑋ℎ +

𝑠   𝑓𝑜𝑟 𝑑 > 𝑑𝑂     (3)  
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𝑛 = 𝑎 − 𝑏ℎ𝑏 +  
𝑐

ℎ𝑏
    (4) 

𝐴 =  20𝑙𝑜𝑔10 (
4𝜋𝑑𝑂

𝜆
)    (5) 

𝑋𝑓 =  6𝑙𝑜𝑔10 (
𝑓

2000
)    (6) 

𝑋ℎ =

 −10.8 𝑙𝑜𝑔10 (
ℎ𝑚

2000
)  𝑓𝑜𝑟 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵 (7) 

𝑋ℎ =  −20 𝑙𝑜𝑔10 (
ℎ𝑚

2000
)  𝑓𝑜𝑟 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝐶 (8) 

Where d is the distance between the base station 

and mobile receiver in meters,   represents the 

reference distance from the base station (usually 

equated to 100m),   is the correction parameter 

for frequency above 1.5GHz,   is the correction 

parameter for receiver antenna height in metres, 

s signifies the shadowing correction parameter in 

dB, n is the PLE and the values of the constants 

a, b and c for each terrain is provided in Table 1. 

Table 1: Terrain Type Description and their 

associated constants for SUI PLM 
Terrain 

Type  

Description A B C 

A Mountainous 

environment with 

heavy vegetation 

4

.

6 

0.0075 12.6 

B Mountainous 

environment with 

little or no 

vegetation 

4

.

0 

0.0065 17.1 

C Rural/Plane Area 

with little or no 

vegetation 

3

.

6 

0.005 20 

2.2 Methods 

2.2.1 Field Strength and Atmospheric 

Measurements 

The 5G signal strength measurements were 

carried out in three (3) different geographical 

locations in Rivers State, Nigeria. These sites 

were chosen mainly due to the 5G network 

access the researchers had during the time of the 

experiment. The socio-technical parameters of 

these sites are shown in Table 2.  

The base station parameters obtained from these 

sites during the study include:  

i. Transmission Frequency = 3.5 GHz 

ii. Transmission Power = 200 mW 

iii. Antenna Height at Base Station = 20 m 

iv. Antenna Gain at Base Station = 18 dBi 

v. Effective Isotropic Radiation Power = 76 dBm 
vi. Antenna Height at Mobile Station = 1m  

vii. Gain of Mobile Antenna = 0.3 dBi 

Table 2: Socio-Technical Parameters of the 

Study Areas 
Parameters A B C 

Name 

  

University of 

Port 

Harcourt 

Teaching 

Hospital 

Complex  

Faculty of 

Education, 

Rivers 

State 

University 

Second 

Artillery 

Junction, 

Business 

Hub Axis 

Longitude and 

Latitude 

Coordinates  

4.8920, 

6.9274 

4.7071, 

6.9801 

4.8440, 

7.0386 

5G Network 

Service 

Providers 

MTN MTN MTN 

Terrain Type Sub-Urban Sub-Urban Sub-Urban 

Landmark University of 

Port 

Harcourt 

Rivers 

State 

University 

Callus 

Miller 

Mobile 

Sales Hub  

Estimated 5G 

users 

500 1500 750 

The 5G signal strength measurements were 

performed with the use of the Tecno CAMON 

19 Pro Android Phone which pre-installed the 

Network Cell Info application. The Network 

Cell Info app is a multifunctional tool used by 

telecom engineers and researchers to gather 

cellular connection data (Okandeji et al., 2020; 

(Lu & Qiu, 2022). It captures the Received Signal 

Strength (RSS) as the researchers walk on the 

pre-defined study routes (Chiguano et al., 2023). 

The output variables of the RSS measurement 

instances are: 

i. Name of the subscriber identity module card 

used. 

ii. The network type considered in the 

measurement. 

iii. The mobile country codes. 
iv. The mobile network codes. 

v. A unique number used to identify each base 

transceiver station (BTS).  

vi. Latitude and Longitude points 
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vii. Signal Strength in dBm. 

viii. Time  

ix. Measurement Speed 

x. Altitude 

xi. The name of the smartphone used to 
conduct the measurement.  

With the use of the Power Data Access Viewer 

(DAV) Web Mapping Application, the 

researchers were able to measure and record 

the atmospheric parameters used in the analysis 

(Viewer, 2022). The DAV is developed by the 

National Aeronautics and Space Administration 

(NASA) and can be accessed via this URL: 

https://power.larc.nasa.gov/data-access-viewer/. 

The atmospheric parameters measured by the 

researchers are shown in Table 3.  

The propagation loss value at each measurement 

instance was computed using Equation 9. 

𝑃𝑙 = 𝐺𝑡 + 𝐺𝑟 + 𝑃𝑡 − 𝑅𝑆𝑆 − 𝐴  (9) 

Where: Pl = Pathloss, Gt = Transmitter antenna 
gain, Gr = Receiver antenna gain, RSS = 

Measured Received Signal Strength and A = 

Connector loss at the transmitter end. 

Table 3: Socio-Technical Parameters of the Study Areas 

S/No. Atm. Parameter Description Abbreviations Units 

1 Air temperature at 2 

metres 

The average air temperature at 2 metres 

above the earth’s surface 

T2M C 

2 Surface Pressure The average surface pressure on the earth PS kPa 

3 Specific Humidity The ratio of the water vapour mass to the 

total air mass at 2 metres above the 

ground 

QV2M g/kg 

4 Wind Speed at 10 metres The average wind speed at 10 metres 

above the earth’s surface   

WS10M m/s 

5 Wind speed at 50 metres The average wind speed at 50 metres 

above the earth’s surface 

WS50M m/s 

6 Wind Direction at 10 

metres 

The average wind direction at 10 metres 

above the earth’s surface 

WD10M Degrees 

7 Wind Direction at 50 

metres  

The average wind direction at 50 metres 

above the earth’s surface 

WD50M Degrees 

8 Precipitation Corrected The bias-corrected average of total 

precipitation at the earth’s surface in 

water mass 

Prectotocorr mm/day 

 

2.2 Development of 5G path loss model using 

selected machine learning algorithms 

In this study, the multi-layer perceptron (MLP) 

neural network was applied to evaluate the 

relationship between the path loss values and the 

input variables. The MLP model is a deep forward 

feed neural network in which the information 

transmission is unidirectional from the input layers 

to the output layer through the hidden layers. The 

perceptrons are initiated by the activation functions 

sigmoid rectified linear unit (ReLU) and others. The 

architecture of the multi-layer perception neural 

network used in this study is shown in Figure 1. 

The basic functions performed by the MLP neural 

network are summation and activation. The 

weighted inputs summation was computed using 

equation 10. 

𝑆𝑢𝑚𝑗 =  ∑ 𝑤𝑖,𝑗
𝑛
𝑖=1 𝐼𝑖 +  𝛽𝑗   (10) 

Where n is the number of input nodes, wi,j is the 

weight of the ith node in the input layer and the 

jth node in the hidden layer, Bj is the bias applied 

in the jth hidden node and Ii is the ith input. The 
activation function was initiated by the ReLU 

activator which is described in Equation 11. 

𝑓𝑗 (𝑥) = max  (𝑋, 0)    (11) 

The final output of the network is obtained as 

expressed in Equation 12. 

𝑦𝑖 = 𝑓𝑗 ( ∑ 𝑤𝑖,𝑗
𝑛
𝑖=1 𝐼𝑖 +  𝛽𝑗)   (12) 
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Figure 1: An overview architecture of Multi-Layer Perceptron (MLP) Neural Network 

The work process of the implementation of the 

MLP neural network on the input data to predict 

the path loss value is presented in Figure 2. 

Modules like pandas, matplotlib, seaborn, sklearn 

packages were imported into the Juptyer 

notebook. 

A preprocessing procedure was performed on 

the dataset using minimum-maximum scaling to 

eliminate feature overshadowing (Sharma, 2022). 

To build the model, the dataset was split into two 

parts: The train set and the Test set. The train 

set was used to build the model while the 

performance of the model was evaluated by the 

test dataset. The performance metrics used to 

access the model are the mean arithmetic error, 

the root mean square root score and the 

coefficient of determination (R2) (Sousa et al., 

2021). The mathematical equations of these 

statistical performance metrics are given by 

Equations (13) through (15). 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ (𝑃𝐿𝑖

𝑚 − 𝑃𝐿𝑖
𝑝 )𝑛

𝑖=1      (13) 

𝑅𝑀𝑆𝐸 = √( 
1

𝑛
 ∑ (𝑃𝐿𝑖

𝑚 −  𝑃𝐿𝑖
𝑝 )2)𝑛

𝑖=1  (14) 

𝑟2 = (
∑ (𝑃𝐿𝑖

𝑚− 𝑃𝐿𝑖
𝑚𝑚)2− ∑ (𝑃𝐿𝑖

𝑝
− 𝑃𝐿𝑖

𝑚)2𝑛
𝑖=1  𝑛

𝑖=1

 ∑ (𝑃𝐿
𝑖
𝑝

− 𝑃𝐿𝑖
𝑚)2𝑛

𝑖=1

)2 (15) 

Where 𝑃𝐿𝑖
𝑚  is the measured path loss value at 

an instance, 𝑃𝐿𝑖
𝑝  is the predicted path loss value 

at an instance, 𝑃𝐿𝑖
𝑚,𝑚  is the mean measured 

path loss value.  

http://www.rsujnet.org/index.php/publications/2024-edition


Available online at: http://www.rsujnet.org/index.php/publications/2024-edition             87 

 
Figure 2: Neural Network Implementation Flow Chart 

3. Results and Discussion 

A correlation experiment was conducted in this 

study. The correlation analysis measures the 

relationship between the variables within the 

dataset, especially the independent variables and 

dependent variable (path loss value). In the 

correlation analysis, it was observed that there 

is a strong positive relationship between 

propagation distance (distance between the 

transmitter and receiver) and the measured path 

loss value with a coefficient of 0.6. This finding is 

in line with the result obtained in a path loss 

measurement carried out at Covenant 

University, Ota, Ogun State, Nigeria where 

there is a positive coefficient of 0.7 between the 

distance and measured path loss value (Popoola 

et al., 2018). While there were weak 

correlations between other independent 

variables and dependent variables. It was also 

observed that there were measures of 

collinearity between two or more independent 

variables. WD10M, WD50M show a fairly weak 

correlation with Prectocorr with magnitudes of 

0.4 and 0.42, respectively. A correlation plot is 

presented in Figure 3. A comparative analysis of 

the prediction results of the developed MLP 

model and all empirical models considered in the 

study (Free Space, ITU, and SUI). This analysis 

was performed to validate the MLP model as the 

optimal option for propagation loss predictions. 
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The path loss values obtained during the field 

measurements and the corresponding predicted 

path loss values were plotted against the 

propagation distance in Figure 4. The axes of the 

plot in Figure 4 are path loss in dB on the y-axis 

and distance in metres on the x-axis. It was 

observed that the three empirical models 

present the same overall behaviour: their plots 

are in the form of logarithmic curves. However, 

the ITU and SUI models over-predicted the path 

loss while the Free Space model 

underperformed the path loss across the 

considered distance range. On the other hand, 

the predictions generated by the MLP model 

were the most accurate and its plot is closely 

identical with the measured path loss prediction 

plot. Overall, empirical models are unable to 

accurately represent the measured data in the 

3500 MHz band within the study areas.  

A close look at the measured data and MLP-

predicted path loss values is presented in Figure 

4. After the MLP neural network performance 

assessment, an R-square score of 0.88 signifies 

that the MLP model explained 88% of the 

variability in the dataset. An RMSE value of 3.80 

dB denotes that the standard deviation of 

unexplained variance between the predicted 

values and measured values is smaller compared 

with the standard 8 dB range of tuned or fitted 

models (Nguyen et al., 2023).  MLP model RMSE 

value was 52.5% lower than the standard value. 

The performance score of the MLP neural 

network is presented in Table 4. All models in 

this study were compared based on the MAE 

performance metrics; it was observed that the 

proposed model outperformed the empirical 

models. The ITU-R model performed best (6.96 

dB) compared to SUI (26.11 dB) and Free Space 

(97.68 dB). In terms of MAE score, MLP neural 

network model obtained 0.88 score while ITU-

R model stood at 0.62, Free Space got 0.28; 

while SUI attained 0.17. Findings obtained from 

the MLP Neural Network are compared with 

the empirical models used in this study in terms 

of MAE and r2 presented in Figure 5(a) and (b).  

Table 4: The performance matrix of the MLP 

neural network model 

Model Type  MAE (dB) RMSE 

(dB) 

r2 

MLP Neural 

Network 

2.54 3.80 0.88 

 
Figure 3:  A correlation matrix plot of the independent variables and the dependent variables. 
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Figure 4:  A multiple line plot of measured path loss values, the selected model predicted path loss 

values, and the propagation distance. 

 
Figure 5:  Comparison of the performance of stated propagation models by (a) the mean absolute error 

(MAE) score and (b) the R-square score. 

4.0    Conclusion and Recommendations 

Empirical path loss models are relatively easy to 

implement by field engineers and researchers, 

however, they are prone to errors, especially in 

a diverse set of environments. This limitation in 

empirical path loss models is addressed when 

Heuristic methods such as the application of 

machine learning methods are employed. The 

results of the study provide evidence that there 

is a strong correlation between propagation and 

path loss determination in a 5G network. The 

application of the MLP neural network in this 

research provided a significant improvement in 

the prediction of 5G signal strength within the 

study area. The prediction errors for the MLP 

NN are better than those of the empirical 

models. It is worth noting that the RMSE value of 

3.80 dB obtained by the MLP is more desirable 

than the standard 8 dB range achieved by tuned 

or fitted models (Nguyen et al., 2023). ITU-R 

model performed the best among all empirical 

models employed in this study. The results 

provided in the study show that atmospheric 

conditions play a tangible role in the evaluation 

of 5G mobile signal path loss computation. The 
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approach used in this study shows there is a need 

to consider this algorithm for various routes 

across a wide range of frequencies, antenna 

heights (transmitter and receivers) and 

atmospheric parameters. For future work, there 
is a need to investigate the feature importance of 

each atmospheric parameter on the MLP neural 

network model. 
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